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We approximate the unit step function, which equals 1 if tEO [0, T] and equals
o if t . T, by functions of the form L~~l A~'\" e-An' 'T, where each An is a given
positive constant. We find the coefficients A~.vl by minimizing the integrated
square of the difference between the unit step function and the approximating
function. We first solve the specialized case where each A" = n. The resulting
sum can be shown to converge in the mean to the unit step function as N -->- w.
The general case is then solved and some interesting properties of the numbers
A~,N' are noted.

[ l\:TRODUCTIO,>

The problem addressed in this paper concerns the fitting of the unit step
function by a series of exponential functions. It resembles Widder's [1 J
treatment of the passage from power series to Laplace transforms via
Dirichlet series. The unit step function f we consider is defined by:

f(t)=I,

f(t) = 0,

O~t~T(T>O):
(1)

t> T.
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The functions to be Llsed to approximate the unit step function are of the
form

s
Fs(tl ~c I A~.\\,~·nl T.

1!--1

N is a given integer ;C.' I, and also I\" are fixed numbers: °<.:: '\1 < 1\2 •.: .....
,\V. The coefficients A~,N) are found by requiring that they minimize the
integral

(3)

In the first part of the paper we treat the simple case where each A" cc n.
This leads to shifted Legendre polynomials, which are moderately familiar
functions. More importantly, it suggests relations and techniques useful in
solving the more general case. Next we digress and present some lesser-known
properties of these polynomials which arose from our work.

In the second part of the paper, the general case of An is treated. Finally,
we show that, as N ---+ XJ in the case An '=C n, F.v(t) approaches f(t) in the
mean, i.e., the integral (3) ---+ 0.

SPECIALIZED CASE

We turn to the simple case'\" ~ n. Carrying out the minimization proce
dure for (3) leads to the set of simultaneous equations

x
L A~;\')I(II - III)· [I - (['e)"']lm.

1t=1

III = 1.2..... N. (4)

We solved this set in two steps. First, we ignored l"e in the numerator of the
right-hand side of (4). We denote the coefficient on the left of (4) by a~;") and
obtain

\'

L a~\)'(I1- III) ~' 1111.

fl.=1

(5)

With the advantage of hindsight. Eqs. (5) can be easily solved by utilizing
a property of the shifted or asymmetric Legendre polynomials. These are a
set of orthogonal polynomials over [0, I] with the weight function I. There
appears to be no standard symbol for representing them. but we feel it is
least confusing to denote them Pv(x), the symbol usually reserved for the
symmetric Legendre polynomials. The function Pv(x) is of the form

(6)
,'=0



with b~1;')
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I for all N. The polynomials have the property that
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m==1,2, .... /I/. (7)

Substituting the expression for P.v(x) from (6) into (7) results in

y

L b~t;);(n + Ill) = O.
11=0

This is (5), with a:;") = _b~N) for n > O. Thus a~V) can be taken as the
negatives of the shifted Legendre polynomials coefficients. Their values are
[2]:

alN) = (_1)"-1 (N + n)! .=:~ (_1)'1-;-1 {N)(N --:- 11). (8)
n (/1/ - 11)! /l! n! ' n 11,

DIGRESSION

In practice, we first obtained the coefficients in the form (8) and did not
recognize their relation to the shifted Legendre polynomials. In the process
of discovering this, we obtained a procedure for calculating Legendre
polynomials that is a hybrid of the generating function approach and a
Rodrigues-type formula. We found that the Nth shifted Legendre polynomial
is

. -..J._ eN , I N .--L 1.... ~1
P:v(.X) - N! cyN [C~ T x) /(J I I) lu~o· (9)

This can be shown most clearly by using Leibnitz's rule for the Nth derivative
of the product of two functions. Applied to (9), we have

I eN
-, -,- [( r -+- X)N ( V -;- l)-(Nt-ll]
IV! <yN. .

Setting y ~ O. we regain (6). An interesting by-product of this approach is
that it can also be shown that the expression

gives the more familiar symmetric Legendre polynomial.
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RETURN TO THE SPECIALIZED CASE

\Ne now solve the system (4) without ignoring any term. Upon computation
of a few lower-order coefficients A ::V), we no~e that they appear to be
polynomials in (I,:e) times a:,X) of (8). For example.

Al~1 ~~ 6[1 - 3(I,'e) 2(1'efl

ai~J[1 - 3(Le) 2(lcn

After various conjectures were tested, we found that

[

.1 '( ]
A~:"-_a~;'V) l1e" I y"-IP",(y)dl'.

• n
iI = I. .... Y. (II )

We have not yet found a short proof that the right-hand side of ( II) satisfies
(4). However. our present proof contains an interesting intermediate result.
The proof is as follows.

Using the fact that
\'

P~;(y) ~ I - I a~\-)y"
11 =1

the integration in (II) is performed and the result is substituted into (4).
The term free of (I Ie) gives (5) back again. and so it remains to show that

I aj..'V J( I.'e)" r£a~:"')I1,«11 111)(11 - knl = (I"e)'''m. (12)
h~1 ,.,~l

for 111 C~ I. 2, ... , N. The term in square brackets in (12) resembles the
Kronecker delta function, equalling 0 when k ~.- 111. To see this, consider

- r1y'" {II. [( Py(y.:;) .:;/,-1 dZ] dl'.
• n {.I. n

( 13)

and carry out the integrations systematically. This quantity is seen to equal
the square-bracketed term in (12). Integrating in (13) by parts and using the
property (7), we are led to posit that

1 1r r y",-Izk-IPX(YZ) dy d:: = 0,
'n '0

( 14)

for I ,:;: III. N. Ie:: k ~.; N. Relation (14) is a two-dimensional analogue
of (7). It can be proved by transforming to new variables:

L" --
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and then integrating. When In = k, integration in the new variables shows
that the polynomials defined in (I I) will satisfy (4) if

.1
I ulll-lP (u) log u du = !/(1Il 2a1lli )., N ' m .
'0

(15)

The validity of (15) can be established directly by inductive reasoning
involving the Rodrigues formula for p ....-(u). It is simpler to regard it as a
particular case of the more general proof given in the next section.

An integral representation for this specialized, consecutive integer case
is obtained by substituting in

1\.

FN(t) = I A~N)(e-tiT)"

tl=l

the value of A~:V) from (11).
Interchanging summation and integration, we get

With the variable change w = ey, we finally obtain

(16)

Using the integral representation (16) and the inequality [3]

(17)

we can examine the behaviour of F....-(t) at certain points as N ->- ,x;. Note that
Pv(O) = 1, Ps(l) = (-I),v. The inequality in (17) shows that, for every
fixed w in the interval (0, 1),

P,v(w) ->- 0

If tiT = 0, integration of (16) gives

as N ->- .x;.

1 --!- (_I)N+! Pv(l!e),

which converges to 1 as N ->- x. If t = T, integration of (16) results in

FN(t = T) = (l - P,v2(l!e)]!2.

As N --+ ·x, F.v(t = T) ->- t at the point of discontinuity where the unit step
function changes from 1 to 0.
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GE:-'ERAL CASE

For the general case, the set of equations that define the coefficients A~:\" i~

:v
'\ At \,) '( \ \) - [I ( I :e)'\"'] \Ln. '11 -~- I ~fI --- -, " tTl •

//=-1

1/1 = l. 2.",. ,\ ( I~)

The A~¥) are uniquely determined since the determinant of the coefficient
matrix is non-zero as long as the A's are distinct. This is a special case of a
general theorem due to Cauchy [5]. Taking our cue from the technique that
worked for the specialized case, we ignored the dependence on Iie in the
right-hand side of (18) and solved for the coefficients. In Appendix A we
prove that the coefficients, denoted once again by a~,N I, are

\'

c\') - ") n (\ ,'- \ )'( \ _.- \ )a rl --.... , J.. 1\" . 'k 1 11 •

I,"" n

II = I, 2. .... X. ( 19)

These coefficients have some interesting properties. If all the,\"s are multiplied
by a constant scale factor, A" = ,\.,\", s ~...:c 0, the coefficients remain un
changed. If the '\'s are transformed into their reciprocals, /\" 1,\" ' the
new coefficients are the original ones multiplied by (-1)\ -I. ;-\ set of poly
nomials which in some respects can be regarded as a generalization of the
shifted Legendre polynomials is defined by

,.

R,,(x) = 1 -- t a~\" X"".

,'=---1

(20)

As for the shifted Legendre polynomials. R,\(O) -~ l. Also, it is sho\\n in
Appendix A that

S-l .\'

I a~;\'-l) - I a~\) ~ I.
/.=1 Il=l

(21)

Since a lll = 2, (21) implies that R\( I) = (-I )\, the same as for the shifted
Legendre polynomials.

To solve for the case where the dependence on I:e in the right-hand side
of(18) is not ignored, we use one more important property of the polynomials
R.'I(x). Using (18), the analogue of (7) for R,,(x) is

.1I R\.(x) .\',1",-1 dx = 0,
'0

111 __c I, 2, ... , II/. (22)

as can be shown. Substituting (20) into (22) gives

\'

I •\ TI (1';) '( \ ' \) 0:' fit - an! , n ---;- /\UI = ,
{(=1

(23)



APPROXIMATION OF THE UNIT STEP FUl'CTION 305

which is the form (18) takes when the dependence on Ije is ignored. Using the
"quasi-orthogonal" relation (22), we can now prove that the set of equations
(18) has the solution

When (24) is substituted into (18), we obtain

11 = I, ... , N. (24)

(26)

I (lIdk a:/')A", [f a~!";)'\n/«'\rt -- '\")('\71 - 1\1.'»1 = (lie)'\m. (25)
/.."=1 n=l

This closely resembles (12) (slightly rearranged) with the proviso that n
now becomes An , etc. That the bracketed term in (15) is 0 if k ~ In can be
proven by the same method that resulted in (13) and (14). We now prove that,
when k == 111, the term multiplying (lleym on the left-hand side of (25) is
equal to I. From (23) we find that

and further, that

Rearranging, we obtain,

ht1 ak'\'),\", ['~1 a~";)'\n/«'\n - '\"')('\71 --:-- '\1.'»1 = I.

The bracketed term in (26) is the same as the bracketed term in (25) and
equals 0 when k de 111. The only term contributing in (26) occurs when
k = 111 and must equal I. This term is precisely the one that multiplies (I ;e)~m

in (25), which completes the proof. The validity of (I5) follows from this
proof.

CONVERGE~CE [~ THE MEAl'

For the specialized case where '\n = n, we now show that the integral in
(3) ->- 0 as N ->- 00. Using (2) and letting the new variable w == e-tfT,

minimizing (3) is equivalent to minimizing the integral

1 [ .\"-1 12
T r. 1(- T log II') - \\' I A~:}1\l'n \\"-1 d\\".

"0 t/=O

(3a)
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We now assume that the sum of power~ of ll' in (3a) is also the sum of a set
of orthogonal polynomials.

\' I

" 41.\ I t,L .' Tt--l H'
/' =011

(27)

The function G,,(w) is the nth polynomial and B~,'\' is the coefficient associated
with it. When (27) is substituted into the integral in (3a) and the squaring of
the bracketed term is carried OLlt. \\e find that orthogonality requires that

.1I \!'Gn(II') G,,'(Ir) (hI' = 0
'n

for 11' c~ 11. (28)

The set of orthogonal polynomials which satisfy (28) is a particular set of
hypergeometric polynomials of Jacobi [3]. They are denoted in the literature
Gi2, 2, w) and satisfy the differential equation

11(1 - II") C;'(2. 2. II') +- (2 - 3\\) G;,(2, 2. II) --r- 11(11 ·:·2) G,,(2. 2. II) 0,

It is known that these classical orthogonal polynomials form a complete
set and thus the series developement in terms of them converges in the
mean [4] to any piecewise continuous function in the interval [0. I]. If the
Jacobi polynomials are normalized so that the constant term equals I, the
connection betw'een them alid the shifted Legendre polynomials is

Further examination shows that the same type of proof can be repeated for
the case where An = sn, s being a positive number. Therefore, as long as
the An are evenly spaced, FvU) will converge in the mean to the unit step
function.

ApPEKDIX A

The set of N equations (18) can be written, for the case where the depen
dence on lie is ignored, as

(29)
a~X)

2A,,-
1

,\x .
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The unknown a~:) may be eliminated by dividing the mth equation by 2A.v ,
dividing the last equation by '\m -;- As , and then subtracting. This is done for
m = 1,2,... , N - 1. After cancellation, a set of N - I equations is obtained;

where

This same process can now be used to eliminate b~~l , which leaves N - 2
equations to solve. Repeating this procedure until only a~N) is left gives

N

(t\) [l (\.. - A1)/(A", + AI) a~\') = I/A1 '

m*1

or

:v
a~N) = 2 [l (A.n + A1)/(A", - AI)'

nI'1=1

(30)

This same elimination procedure can be used to isolate any of the unknowns
as the remaining one. This is how (19) is obtained.

Multiplying the last equation in (29) by 2As gives

....'-1

I a~\')2AN!(Av + An) --:-. a~~') = 2.
n=l

Using the fact that 2A,v!(As -L An) = I -L (As - An)!(As + A,,), and recog
nizing from (30) that

we finally obtain

N-l .v
I a~IS-l) + I a~:";) == 2.

11=1 n=l

(31 )
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